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Abstract—This paper provides the performance characteriza-

tion of a three-dimensional (3D) two-hop decode-and-forward

(DF) aerial-terrestrial communication network, where unmanned

aerial vehicles (UAVs) coexist with terrestrial base stations (BSs)

to serve a set of user equipment (UE) on the ground. We assume

that each UE connects either to a BS via access link or through

a UAV to a BS via joint access and backhaul links, where the

link from the UE to the UAV is an access link and from the

UAV to the BS is a backhaul link. To capture the impact of

directionality in practical antennas, we use a model developed by

the third generation partnership project (3GPP) for the antenna

radiation pattern of both BSs and UAVs. Following the nearest

neighbor association policy, we obtain the joint distance and

angle distribution of the serving UAV to the origin in a 3D

setting using tools from stochastic geometry. Furthermore, we

identify and analyze key mathematical constructs as the building

blocks of characterizing the received signal-to-interference-plus-

noise ratio (SINR) distribution at the typical UE for the DF

relaying protocol. Using these intermediate results, we derive an

exact mathematical expression for the coverage probability in

UAV-assisted two-hop DF cellular networks. One key takeaway

from our analysis is the existence of a mean UAV height and a 3D

density of UAVs that optimize the network coverage performance.

Index Terms—UAV, 3D network, wireless backhaul, stochastic

geometry, decode-and-forward, aerial-terrestrial coexistence.

I. INTRODUCTION

Recently, there has been a lot of interest in using UAVs
as wireless transceivers due to their easy and cost-effective
deployment, agility, and high probability of line-of-sight [2].
UAVs can act as aerial UEs, cellular BSs, or wireless relays
with a multitude of applications, such as package delivery,
providing temporary service in case of large gatherings or
natural disasters, and coverage extension. Although terrestrial
BSs are mostly connected to the core network via strong fiber
links, UAVs need to be wirelessly backhauled to the BSs
first, as they usually do not have “wired” connections to the
ground. Given the fact that BS antenna arrays are normally
tilted downward to serve the UEs on the ground, UAVs will be
served by BS antenna sidelobes, and thus, providing a reliable
wireless backhaul link to the UAVs becomes very challenging.
Inspired by this observation, we present a comprehensive
performance analysis of 3D aerial-terrestrial cellular networks,
in which BSs provide wireless backhaul to the UAVs.

Related Works. Stochastic geometry has been used ex-
tensively in the past decade to study a variety of wireless
networks [3]–[5]. In particular, due to the emergence of UAVs
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as potential wireless transceivers with random placements
and movements, there has been a surge of interest in using
stochastic geometry for the system-level analysis of these
aerial networks [6]–[12]. Assuming a binomial point process
(BPP) to model the locations of a finite network of UAVs
[6], the coexistence of UAVs with an infinite network of BSs
distributed as a Poisson point process (PPP) is considered in
[7], where the authors derived the overall coverage probability
and area spectral efficiency of the network using a probabilistic
channel model. Similarly in [8] and [9], the received rate at
the typical terrestrial and aerial UE, respectively, is derived
in a vertical heterogeneous network. Performance analysis
of mobile UAV networks is studied in [10]–[12], where the
authors considered various canonical mobility models, such as
straight-line and random waypoint, for the analysis of average
rate and handover probability. The authors in [13] provided a
system-level analysis of two-hop DF terrestrial networks using
stochastic geometry and optimization theory. As the number
of terrestrial and aerial BSs/transceivers grows rapidly, it is
quite natural that some of them are wirelessly backhauled to
the core network [14]. Using tools from stochastic geometry,
the authors in [15] studied the impact of UAV millimeter-
wave (mmWave) backhauling in an aerial-terrestrial network.
As mmWave networks suffer from severe link blockages, the
authors in [16] considered the use of UAV-relays in a flexible
backhaul architecture for dynamically rerouting to alternative
paths to avoid blockages. The problem of finding the success
probability of establishing a UAV wireless backhaul network
using directional antenna arrays is analyzed in [17]. Despite
these existing works, the comprehensive coverage analysis of
3D two-hop aerial-terrestrial cellular networks (where BSs
provide wireless backhaul to the UAVs) is still an open
problem, which is the main focus of this paper.

Contributions and Outcomes. Using practical antenna mod-
els proposed by the 3GPP studies [18], this paper character-
izes the performance analysis of 3D backhaul-aware two-hop
cellular networks, where UAVs and BSs coexist to serve the
ground UEs. In particular, fiber-backhauled BSs are modeled
as a 2D homogeneous PPP at a constant height above the
ground, while UAVs are modeled as a 3D homogeneous PPP
hovering between two permissible heights and are wirelessly
backhauled to the BSs. Using the nearest neighbor association
policy and the DF relaying protocol, we adopt a hybrid scheme
[19] in which UEs connect either directly to the serving BS
(access-only), or indirectly via the serving UAV to the serving
BS (joint access and backhaul), whichever provides higher
received SINR. We extensively analyze this setup by first
identifying the building blocks of the received SINR in the



DF relaying protocol. Using tools from stochastic geometry
in our 3D setup, we derive the joint distance and zenith
angle distribution of the serving UAV to the typical UE.
Following these results, we finally provide the exact coverage
probability in UAV-assisted two-hop DF cellular networks. To
the best of our understanding, this is the first work that gives
a comprehensive 3D backhaul-aware analysis of UAV-assisted
DF cellular networks using practical antenna models.

II. SYSTEM MODEL

We consider a network of BSs at height hB that coexists
with a 3D network of UAVs to serve the ground UEs. We
model the projections of the BS locations onto the ground as a
2D PPP �B with constant density �B, while the UAV locations
follow a 3D PPP �D with constant density �D in the space
enclosed between heights hD,m and hD,M, independently from
�B. The UEs are distributed on the ground as another 2D
PPP �U, where we perform our analysis for the typical UE
located at the origin o = (0, 0, 0) of the 3D coordinate system.
Using subscript ‘0’ to indicate the serving BS and UAV, we
represent the 3D and 2D (i.e., horizontal) distances from the
serving BS (resp. serving UAV) located at B0 (resp. D0) to o
by rB0 and uB0 (resp. rD0 and uD0 ), respectively, as shown
in Fig. 1. Similarly, Bx, rBx , and uBx (resp. Dx, rDx , and
uDx ) are, respectively, defined as the location of any BS in
�B (resp. any UAV in �D) and its 3D and 2D distances to
o. Furthermore, the 3D distance between B0 and D0 and the
zenith angle of the serving UAV to o are denoted as rB0D0

and ✓D0 , respectively.
Following realistic antenna patterns developed by 3GPP

studies [18], we assume each BS is equipped with a uniform
linear array (ULA) with NB = 8 equally-spaced antenna
elements, where each element is an omnidirectional antenna
that has a normalized power pattern (in dB) of GE(✓) =

Gmax

E
� min{12( ✓�⇡/2

✓3dB
)
2, SLA}, where Gmax

E
= 8 dBi is

the maximum gain, ✓3dB = 65
� is the 3dB beamwidth, and

SLA = 30 dB is the sidelobe attenuation limit [18]. The array
factor of the ULA can also be written as [20, Sec. 8.3.2]

fA(✓, ✓B) =
sin

�
NB

⇡
2
[cos(✓)� cos(✓B)]

�

NB sin
�
⇡
2
[cos(✓)� cos(✓B)]

� , (1)

where ✓ and ✓B are the zenith angle and the downtilted
direction of the BS antenna mainlobe, both measured from
the z-axis, respectively. Therefore, the gain of the BS antenna
array along direction ✓ can be written in dBi as [20, Sec. 8.4]

GB(✓, ✓B) = GE(✓) + 20 log(|fA(✓, ✓B)|). (2)

We assume each UAV has two antennas, one for backhaul and
the other for access. The UAV backhaul antenna is directional
and has vertical, horizontal, and 3D radiation patterns (in
dB) of GV(✓, ✓0) = �min{12( ✓�✓0

✓3dB
)
2, SLA}, GH(�,�0) =

�min{12(���0

�3dB
)
2, Am}, and GBH

D
(✓,�, ✓0,�0) = Gmax�

min {�GV(✓, ✓0)�GH(�,�0), Am}, respectively, where
(✓0,�0) is the antenna direction, Gmax

= 8 dBi is the
maximum gain, ✓3dB = 10

� and �3dB = 10
� are the vertical

and horizontal 3dB beamwidths, SLA = 30 dB, Am = 30 dB
is the front-back ratio [18], and the superscript BH stands for
“backhaul”. The UAV access antenna is omnidirectional and

x

y

z

0 0B Dr

0B
r

0B
u

0D
u

0D
r

Bh

o

xB
r

xD
r

0D
T

Fig. 1. An illustration of the system model. Solid green and dotted red
lines denote the desired and interfering signals, respectively. Also, access and
backhaul links are shown as solid green and blue lines, respectively.

tilted completely toward the ground, and similar to the BS
antenna elements, its gain can be written in dBi as

GAC

D
(✓) = Gmax �min

(
12

✓
✓ � ⇡

✓3dB

◆2

, SLA

)
, (3)

where Gmax
= 8 dBi, ✓3dB = 120

�, SLA = 30 dB, and
the superscript AC stands for “access”. As for the UEs, we
assume isotropic antennas with 0 dBi gains in all directions.

Assuming that BSs have strong fiber backhaul links to the
core network and UAVs are wirelessly backhauled to the BSs,
we consider two service models for connecting UEs to the
core network: (i) access only, where a BS-UE link is formed,
and (ii) joint access and backhaul, where BS-UAV (backhaul)
and UAV-UE (access) links are formed. We assume the nearest
neighbor association policy in this paper, and thus, the closest
BS and UAV to the typical UE are regarded as the serving BS
and UAV, respectively. The received SINR at the typical UE
from the serving BS and UAV are defined, respectively, as

SINRBU=
PRx

B0

IU+PRx

D0
+N0

, SINRDU=
PRx

D0

IU+PRx

B0
+N0

, (4)

where PRx

B0
= PBGB0fB0r

�↵
B0

and PRx

D0
= PDGD0fD0r

�↵
D0

are
the received powers at the typical UE from the serving BS and
UAV, respectively, N0 is the noise power, and IU = IBU+IDU

is the total interference from the BSs (IBU) and UAVs (IDU)
at the typical UE, where IBU =

P
Bx2�

0
B
PBGBxfBxr

�↵
Bx

and
IDU =

P
Dx2�

0
D
PDGDxfDxr

�↵
Dx

. Furthermore, assuming that
the total interference at the serving UAV is negligible due to
the directionality of antennas, we write the received SINR at
the serving UAV from the serving BS as SINRBD =

PRx
B0D0
N0

,
where PRx

B0D0
= PBgB0gD0fB0D0r

�↵
B0D0

is the received power
at the serving UAV from the serving BS. We summarize the
parameters in these equations as follows: ↵ is the path-loss
exponent, PB and PD are the transmit powers of the BSs and
UAVs, GB0 and GD0 are the serving BS and UAV antenna
gains along the direction of the typical UE, gB0 and gD0 are
the serving BS and UAV antenna gains toward each other, fB0 ,
fD0 , and fB0D0 are the fading powers between the serving
BS and the typical UE, the serving UAV and the typical UE,
and the serving BS and the serving UAV, �0

B
⌘ �B\B0 and

�
0
D
⌘ �D\D0 are the set of interfering BSs and UAVs, and the

other parameters (GBx , GDx , fBx , fDx ) are defined similarly.
We assume Nakagami-m fading model to capture a variety

of fading environments, and thus, all channel fading powers



(i.e., fB0 , fD0 , fB0D0 , fBx , and fDx ) are distributed as
gamma random variables with cumulative distribution function
(cdf) and probability density function (pdf) of Fx(x) =

1

�(m)
�(m,mx) and fX(x) =

mm

�(m)
xm�1

e
�mx, respectively,

where �(s, x) =
R x
0
ts�1

e
�t

dt is the lower incomplete gamma
function and �(s) = �(s,1) is the gamma function. We
further assume that m is integer for mathematical tractability.

We adopt the DF relaying protocol, where the received
signal from the source (BS) at the relay (UAV) is first
decoded, then re-encoded, and finally forwarded to the des-
tination (UE). The DF end-to-end SINR can be written as
SINRe2e = min {SINRBD, SINRDU}. In this paper, we use
a hybrid scheme where the UE can be served either by the
BS-UE access link or by both the BS-UAV (backhaul) and
UAV-UE (access) links, whichever provides higher throughput
[19]. Hence, we write the received SINR at the typical UE as

SINR = max {SINRBU, SINRe2e} . (5)

We now define coverage probability to evaluate the network
performance as PC = P[SINR � ⌧ ], i.e, the probability that
the received SINR at the typical UE exceeds a threshold ⌧ .

III. COVERAGE PROBABILITY

In order to rigorously analyze the network coverage proba-
bility, we first study key mathematical constructs involved in
the analysis of SINR of UAV-assisted two-hop networks and
a specific useful property of 3D PPPs. For ease of notation,
we represent the BS-UE, UAV-UE, and BS-UAV SINR values
given in Section II as

SINRBU=
aX

bY +I
, SINRDU=

bY

aX+I
, SINRBD=

cZ

N0

, (6)

where X = fB0 , Y = fD0 , Z = fB0D0 , a = PBGB0r
�↵
B0

,
b = PDGD0r

�↵
D0

, c = PBgB0gD0r
�↵
B0D0

, and I = IU+N0. The
following lemma provides the statistics of necessary functions
for the analysis of DF two-hop networks.

Lemma 1. Let X ⇠ �(m,m) and Y ⇠ �(m,m) be two
independent gamma random variables, and a, b, and I be
given non-negative constants. The cdf of T1 =

aX
bY+I and T2 =

max{aX,bY }
min{aX,bY }+I can be written, respectively, as

FT1(⌧) = 1�
m�1X

i=0

iX

k=0

(k +m� 1)!

k!(m� 1)!(i� k)!

⇥ am(b⌧)k

(a+ b⌧)m+k

⇣m⌧

a
I
⌘i�k

e
�m⌧

a I (7)

FT2(⌧) =
m�1X

i=0

�
⇣
m+ i,

�
1

a+
1

b

�
m⌧

|1�⌧ |1(⌧<1)
I
⌘

i!(m� 1)!

ambi+aibm

(a+ b)m+i

�
m�1X

i=0

iX

k=0

�
⇣
m+ k,

�
⌧
a+

1

b

�
m⌧

|1�⌧ |1(⌧<1)
I
⌘

k!(m� 1)!(i� k)!

⇥ am(b⌧)k

(a+ b⌧)m+k

⇣m⌧

a
I
⌘i�k

e
�m⌧

a I

�
m�1X

i=0

iX

k=0

�
⇣
m+ k,

�
1

a+
⌧
b

�
m⌧

|1�⌧ |1(⌧<1)
I
⌘

k!(m� 1)!(i� k)!
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Fig. 2. The 3D network setting when the serving UAV is at distance r from
o for (a) hD,m  r  hD,M, and (b) r > hD,M.

⇥ (a⌧)kbm

(a⌧ + b)k+m

⇣m⌧

b
I
⌘i�k

e
�m⌧

b I , (8)

where 1(.) is the indicator function.

Proof: See Appendix A.

Remark 1. As ⌧ ! 0 and ⌧ ! 1, both cdfs tend to 0 and
1, respectively. For T1 and when ⌧ ! 0, all the terms in the
double summation are 0, except for i = k = 0, which is 1,
making FT1(0) = 0. When ⌧ ! 1, the double summation will
be 0, making FT1(1) = 1. For T2 and when ⌧ ! 0, since
�(s, 0) = 0 for all s, we have FT2(0) = 0. When ⌧ ! 1, the
double summations are both 0, while the single summation is
equal to 1 [21, Eq. (1.78)], and thus, FT2(1) = 1.

Considering the point process of BSs and using the near-
est neighbor association policy, we provide the serving BS
distance distribution in the next lemma, which has a straight-
forward proof using the null probability of PPP �B [3].

Lemma 2. The cdf and pdf of the serving BS distance to the
typical UE can be written as FrB0

(r) = 1 � e
�⇡�B(r2�h2

B)

and frB0
(r) = 2⇡�Bre�⇡�B(r2�h2

B), respectively.

In the course of the following two lemmas, we derive the
joint distance and angle distribution of the serving UAV to
the typical UE in our 3D aerial setting.

Lemma 3. The cdf and pdf of the serving UAV distance to the
typical UE can be written as FrD0

(r) = 1� e
�⇡�D�(r) and

frD0
(r)=2⇡�Dr

2
(cos(✓D,M(r))� cos(✓D,m(r))) e

�⇡�D�(r),

respectively, where

✓D,m(r)=cos
�1

(
hD,m

r
), ✓D,M(r)=cos

�1
(min{hD,M

r
, 1}),

�(r)=r3 [cos(✓D,M(r))� cos(✓D,m(r))]

� 1

3
r3

⇥
cos

3
(✓D,M(r))� cos

3
(✓D,m(r))

⇤

Proof: Consider the 3D setting in Fig. 2. We have

FrD0
(r) = P[rD0  r] = 1� P[No UAV in A or B]

= 1� e
�⇤(A)1(hD,m  r  hD,M)� e

�⇤(B)1(r > hD,M)



(a)
= 1�

8
>>>>>>>>>>>>>><

>>>>>>>>>>>>>>:

exp

h
�
R
2⇡
0

R
cos

�1
(
hD,m

r )

0

R r
hD,m
cos(✓1)

�D

⇥ r2
1
sin(✓1) dr1 d✓1 d�1

i
r  hD,M

exp

h
�
R
2⇡
0

R
cos

�1
(
hD,M

r )

0

R hD,M
cos(✓1)
hD,m
cos(✓1)

�D

⇥ r2
1
sin(✓1) dr1 d✓1 d�1

�
R
2⇡
0

R cos
�1

(
hD,m

r )

cos�1(
hD,M

r )

R r
hD,m
cos(✓1)

�D

⇥ r2
1
sin(✓1) dr1 d✓1 d�1

i
r > hD,M

,

where ⇤(S) is the intensity measure of set S and (r1, ✓1,�1) is
the spherical coordinate triplet. We derived the null probability
of 3D PPP �D in (a) by integrating its density over the
spherical cap A for hD,m  r  hD,M (Fig. 2 (a)) and the
spherical segment B for r > hD,M (Fig. 2 (b)). Evaluating
these integrals and taking their derivatives w.r.t. r, we obtain
the cdf and pdf of rD0 as given in the lemma statement.

Lemma 4. The joint pdf of the distance and zenith angle of
the serving UAV to the typical UE can be written as

frD0 ,✓D0
(r, ✓) = 2⇡�Dr

2
e
�⇡�D�(r)

⇥ sin(✓)1(✓D,M(r)  ✓  ✓D,m(r)), (9)

where ✓D,m(r), ✓D,M(r), and �(r) are as given in Lemma 3.

Proof: To obtain the joint pdf of rD0 and ✓D0 , we
first derive the conditional pdf f✓D0 |rD0

(✓|r). Conditioned on
rD0 = r, the serving UAV is distributed uniformly on the
surface of the spherical cap A or the spherical segment B.
Since the differential element of solid angle ⌦ for a sphere
is given as d⌦ = r2 sin(✓)drd✓d� = �r2drd(cos(✓))d�, we
conclude that cos(✓) should be uniformly distributed between
cos(✓D,M(r)) and cos(✓D,m(r)). Hence, we have

f✓D0 |rD0
(✓|r) = sin(✓)1(✓D,M(r)✓✓D,m(r))

cos(✓D,M(r))� cos(✓D,m(r))
.

Now, using the identity frD0 ,✓D0
(r, ✓) = f✓D0 |rD0

(✓|r)frD0
(r)

and the previous lemma, we obtain (9).

Remark 2. The random variables rD0 and ✓D0 are clearly
dependent. However, this dependency becomes less significant
as |hD,M�hD,m| ! 1. In fact, when UAVs are distributed as
a 3D PPP in the half-space z � 0, rD0 and ✓D0 will become
independent from each other and we have

frD0
(r)=2⇡�Dr

2
e
� 2

3⇡�Dr3 , f✓D0
(✓)=sin(✓)1

⇣
0✓ ⇡

2

⌘
.

Using the previous lemmas, we state the main result of this
paper in the following theorem.

Theorem 1. The coverage probability for the DF relaying
protocol can be written as

PC =

Z
2⇡

0

Z 1

hD,m

Z ✓D,m(r)

✓D,M(r)

Z 1

hB

Z 1

0

WfZ(z)frB0
(rB0)

⇥ frD0 ,✓D0
(r, ✓)f�B0D0

(�) dz drB0 d✓ dr d�, (10)

where Z = fB0D0 ⇠ �(m,m), frB0
(r) and frD0 ,✓D0

(r, ✓) are
given in Lemmas 2 and 4, respectively, �B0D0 ⇠ U [0, 2⇡) is
the azimuthal angle between B0 and D0, a = PBGB0r

�↵
B0

,
b = PDGD0r

�↵
D0

, c = PBgB0gD0r
�↵
B0D0

, GD0 =GAC

D
(⇡�✓D0),

GB0 = GB(⇡ � cos
�1

(
hB
rB0

), ✓B), gD0 = Gmax, gB0 =

GB(cos
�1

(
rD0 cos(✓D0 )�hB

rB0D0
), ✓B), r2

B0D0
= r2

B0
+ r2

D0
�

2hBrD0 cos(✓D0)�2

q
r2
B0

� h2

B
rD0 sin(✓D0) cos(�B0D0), and

W = V1+(1�V0)(V2+V31(⌧ < 1)), where V0 =
�(m,

N0
c m⌧)

(m�1)!
,

and V1, V2, V3, and the conditional Laplace transform of
interference are given at the bottom of this page.

Proof: See Appendix B.

Remark 3. Ignoring noise, we have SINRBD ! 1, and thus
SINRe2e = SINRDU. Therefore, the coverage probability for

V1 =

m�1X

i=0

iX

k=0
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k+m�1

k

◆
am(b⌧)k
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1
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����
s1= 1
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,

V2 =

m�1X

i=0

iX

k=0
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LI(s2|B0,D0)

����
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i

◆
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j
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s3=

a+b
ab(1�⌧)m⌧

�
m�1X

i=0

iX

k=0

k+m�1X

j=0

✓
k+m�1

k

◆✓
j+i�k

j

◆

⇥
✓

⌧

1� ⌧

◆j
"

am(b⌧)k�j

(a+ b⌧)m+k�j

(�s1)
j+i�k

(j+i�k)!
+

(a⌧)k�jbm

(a⌧ + b)k�j+m

(�s2)
j+i�k

(j+i�k)!

#
@j+i�k

@sj+i�k
3

LI(s3|B0,D0)

����
s3=

a+b
ab(1�⌧)m⌧

,

LI(s|B0,D0) = exp

"
� sN0 � 2⇡�B

Z 1

uB0


1�

⇣
1 +

sPB

m

GB

�
⇡ � tan

�1
(
uBx
hB

), ✓B
�

�
u2

Bx
+ h2

B

�↵
2

⌘�m
�
uBxduBx

� 2⇡�D

Z ✓D,m(rD0 )

✓D,M(rD0 )

Z hD,M
cos(✓Dx

)

rD0


1�

⇣
1 +

sPD

m

GAC

D
(⇡ � ✓Dx)

r↵
Dx

⌘�m
�
r2
Dx

sin(✓Dx)drDxd✓Dx

� 2⇡�D

Z ⇡
2

✓D,m(rD0 )

Z hD,M
cos(✓Dx

)

hD,m
cos(✓Dx

)


1�

⇣
1 +

sPD

m

GAC

D
(⇡ � ✓Dx)

r↵
Dx

⌘�m
�
r2
Dx

sin(✓Dx)drDxd✓Dx

#
.



Fig. 3. The joint distribution of rD0 and ✓D0

(�D=10�6, hD,m=50 m, hD,M=200 m).
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Fig. 4. Coverage probability as a function of mean
UAV height (�D=10�8, hD,M�hD,m=100 m).
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Fig. 5. Coverage probability as a function of UAV
density (hD,m=50 m, hD,M=200 m).

the DF protocol in an interference-limited network is the same
as given in Theorem 1 with W = V1+V2+V31(⌧ < 1), where
V1, V2, and V3 are given in Theorem 1 statement.

IV. NUMERICAL RESULTS

In this section, we verify our technical results via simula-
tions and glean several system-level insights of our 3D setup.
The simulation parameters are as follows: �B = 10

�6 (i.e.,
1 BS/km2), hB = 20 m, �D ranges in {10�9, . . . , 10�6},
hD,m and hD,M take values in {50, . . . , 950} m, ↵ = 3,
m = 1, PB = 10 dB, PD = 5 dB, N0 = 10

�8, NB = 8, and
✓B = 100

� (measured from the z-axis). In Fig. 3, we plot the
joint pdf of the UAV serving distance (rD0 ) and zenith angle
(✓D0 ) with �D = 10

�6, hD,m = 100 m, and hD,M = 300 m.
Note that the histogram bars are the simulation data while
the surface plot is from Lemma 4. Keeping the difference
between the maximum and minimum UAV heights constant
(i.e., hD,M�hD,m = 100 m), we show the coverage probability
as a function of the mean UAV height in Fig. 4. Assuming
hD,m = 50 m and hD,M = 200 m, we plot the coverage
probability as the UAV density is increased in Fig. 5.

As is clear from Figs. 4 and 5 and also from the definition,
the coverage probability decreases as the SINR threshold ⌧
increases. Furthermore, we observe from these figures that
there is a mean UAV height h⇤

D
and UAV density �⇤

D
for which

the coverage probability is maximized for each SINR threshold
⌧ . Increasing the average UAV height has two effects: (i) the
average distance from the UAVs to the typical UE is increased,
and (ii) the average zenith angle from the UAVs to the typical
UE is decreased. Note that the former is detrimental to both
desired and interfering signals, while the latter is favorable
to both, as the UAV access antennas are omnidirectional and
titled completely toward the ground (see (3)). The overall
effect of these contending phenomena is an optimal mean
UAV height h⇤

D
for each ⌧ , which can be seen in Fig. 4.

Similarly, increasing the average number of UAVs has three
effects: (i) the mean serving UAV distance is decreased, (ii) the
mean distance between the interfering UAVs and the typical
UE is decreased, and (iii) the aggregate number of interferers
is increased. Although the first effect is favorable, the others
worsen the coverage probability, and thus, their overall impact
is an optimal UAV density �⇤

D
, as seen in Fig. 5.

V. CONCLUSION

In this paper, we presented the fundamentals of performance
analysis of 3D two-hop DF aerial-terrestrial networks, where

UAVs and BSs coexist to serve the ground UEs. A hybrid
scheme is adopted, in which UEs connect either directly to
BSs via access link or through UAVs to BSs via joint access
and backhaul links, whichever provides higher SINR. We used
realistic antenna radiation patterns developed by 3GPP for
both BSs and UAVs to address the effect of directionality in
practical antennas. Using tools from stochastic geometry and
assuming the nearest neighbor association policy, we provided
a rigorous analysis of the joint distribution of the serving UAV
distance and zenith angle to the typical UE. Using this novel
result and by identifying the building blocks of SINR distribu-
tion analysis, we provided an exact mathematical treatment for
the coverage probability in two-hop DF cellular networks that
use UAVs for wireless backhaul. To the best of our knowledge,
this is the first work that offers a rigorous analysis of 3D
UAV-assisted cellular networks, in which BSs provide wireless
backhaul to the UAVs using a two-hop DF protocol. Extending
the results of this paper to more elaborate multi-hop settings
and other relaying schemes, such as amplify-and-forward, are
promising future research directions.

APPENDIX
A. Proof of Lemma 1

By definition, we have FT1(⌧) = P [aX  ⌧bY + ⌧I]
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where in (a) we used the independence of X and Y and in (b)
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resulting integral. The final result in (7) is obtained by further
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Denote the first and second double integrals in region ⌧ < 1

as L1 and L2, respectively. Note that once L1 is derived, L2

is readily obtained by switching a and b. We have
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where in (a) we used the independence of X and Y and the
series expansion of the cdf of gamma random variables and in
(b) we first switched the order of summation and integration
and then simplified the integrals using the binomial expansion
and the definition of the lower incomplete gamma function.
As for region ⌧ � 1, the proof follows the same steps as
above, but becomes simpler since we end up with gamma
functions instead of incomplete gamma functions. Noting that
�(s,1) = �(s), we obtain the final result as given in (8).

B. Proof of Theorem 1
Using the definition, we can write PC , P [SINR � ⌧ ]
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where in (a) we conditioned the probabilities on knowing B0,
D0, and I = IU+N0, and in (b) we wrote the SINR terms in
their simpler forms as in (6) and used the relation P [E \ F ]+

P
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⇤
= P [E], where E = SINRBU and F = SINRDU,

to further simplify the result. To take these expectations
w.r.t. I after using Lemma 1, we need to derive the Laplace
transform of I , which can be formulated as LI(s|B0,D0) =
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due to the independence of IBU and IDU. Starting with the
conditional Laplace transform of IBU, we have LIBU(s|B0)
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where in (a) we took the moment generating function (mgf)
of the gamma random variable fBx , and in (b) we used the
probability generating functional (pgfl) of the 2D PPP �

0
B

.
Similarly, we can write the conditional Laplace transform of
IDU as above with the only difference being the 3D setting.

Therefore, the integration in step (b) would be over the space
enclosed between z = hD,m and z = hD,M planes excluding
an spherical cap or spherical segment of radius rD0 . Noting
that rBx =

q
u2

Bx
+ h2

B
, GBx = GB (⇡ � ✓Bx , ✓B), and

GDx = GAC

D
(⇡ � ✓Dx), where ✓Bx = tan

�1
(
uBx
hB

) and ✓Dx

are the zenith angles of the BS and UAV located at Bx and
Dx, respectively, we obtain the conditional Laplace transform
of I as given in the theorem statement. Using this and taking
the expectations in (11) over the joint distribution of Z, rB0 ,
✓D0 , rD0 , and �B0D0 , we obtain the final result as in (10).
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